STATE BOARD OF TECHNICAL EDUCATION, BIHAR Scheme of Teaching and Examinations for IIIRD SEMESTER DIPLOMA IN CERAMIC ENGINEERING (Effective from Session 2020-21 Batch)

THEORY

Sr. No.	SUBJECTS	SUBJEC TCODE	TEACHINGS CHEME		EXAMINATION – SCHEME						
		10022	Periods per Week	Hours of Exam.	Teacher's Assessment (TA) Marks (A)	Class Test (CT) Marks (B)	End Semester Exam. (ESE) Marks (C)	Total Marks (A+B+C)	Pass Marks ESE	Pass Marks in the Subject	Credits
1.	Applied Mathematics	2000301	04	03	10	20	70	100	28	40	03
2.	Computer Programming Through 'C'	2000302	03	03	10	20	70	100	28	40	03
3.	Ceramic and raw Materials	2013303	03	03	10	20	70	100	28	40	03
4.	Glass Technology – I	2013304	03	03	10	20	70	100	28	40	03
5.	Enamel Technology	2013305	03	03	10	20	70	100	28	40	03
		Tot	al: - 16				350	500			15

PRACTICAL

Sr. No.	SUBJECTS	SUBJECT CODE	TEACHING SCHEME	EXAMINATION – SC			SCHEME				
			Periods per Hour		Hours Practical		rs Practical		Total	Pass Marks	Credits
			week	oi Exam.	Internal (PA)	External (ESE)	Marks	In the Subject			
6.	Computer Programming through "C" Lab	2000306	06 50% Physical 50% Virtual	03	15	35	50	20	03		
7.	Ceramic Processes Workshop-I	2013307	02 50% Physical 50% Virtual	03	15	35	50	20	01		
8.	Ceramic Engineering Workshop Practice – I (Glass & enamel)	2013308	02 50% Physical 50% Virtual	03	15	35	50	20	01		
9.	Ceramic Engineering Lab-I	2013309	02 50% Physical 50% Virtual	03	07	18	25	10	01		
		Total:	12				175		06		

TERM WORK

Sr. No.	SUBJECTS	SUBJECT CODE	TEACHING SCHEME	EXAMINATION – SCHEME					
			Periods per week	Marks of Internal (PA)	Marks of External (ESE)	Total Marks	Pass Marks in the Subject	Credits	
10.	Python / Others (TW)	2000310	02	07	18	25	10	01	
11.	Ceramic Engineering Workshop Practice – I (Glass & Enamel) (TW)	2013311	03	15	35	50	20	02	
Total: - 05 75 03									
Total Periods per week Each of duration one Hours= 33Total Marks =750							24		

APPLIED MATHEMATICS

		Theory					Credits	
S	ubject Code	No.	of Periods Per	Week	Full Marks	:	100	_
	2000301		Т	P/S	ESE	:	70	03
	2000201	04			IA CT	:	20	_
						•	20	
	Contents:							Marks
Unit -1	Integration:							
	1.1 Definition of integration as anti-derivative. Integration of standard function.							
	1.2 Rules of integrat	ion (Integrals	of sum, diffe	erence, scalar m	ultiplication).			
	1.3 MethodsofIntegration.							
	1.3.1 Integrat	ion by substit	ution					
	1.3.2 Integrat	ion of rational	functions.				10	20
	1.3.3 Integration by partial fractions.					12	20	
	1.3.4 Integration by trigonometric transformation.							
	1.3.5 Integrat	ion by parts.						
	1.4 Definite Integration.							
	1.4.1 Defini	tion of definit	e integral.					
	1.4.2 Proper	ties of definite	e integral wit	h simple proble	ems.			
	1.5 Applications of	f definite integ	grals.					
	1.5.1 Area u	nder the curve						
	1.5.2 Area b	etween two cu	rves.					
	1.5.3 Mean a	and RMSvalues						
Unit -2	Differential Equation	<u>n</u>						
	2.1 Definition of	differential eq	uation, orde	r and degreeof				
	differential eq	uation. Forma	tion of diffe	rential equatio	n for			
	functionconta	iningsingleco	nstant.				10	15
	2.2 Solution of dia	fferential equa	tions of first	order and first	degree such as			
	variable separa	able type, redu	cible to Varia	ble separable, l	Homogeneous,			
	Nonhomogeneous, Exact, Linear and Bernoulli equations.							
	2.3 Applications	fDifferential	equations.	-				
	2.3.1 Laws of voltage and current related to LC, RC, and LRC Circuits.							
		-		·				

Unit - 3	Lap	lace Transform			
	3.1	Definition of Laplace transform, Laplace transform of standard functions.			
	3.2	Properties of Laplace transformsuch as Linearity, first shifting,			
		second shifting, multiplication by tn, division by t.		08	14
	3.3	InverseLaplacetransforms. Properties-linearly first shifting, second			
		shifting. Method of partial fractions,			
	3.4	Convolution theorem.			
	3.5	Laplace transform of derivatives,			
	3.6	Solution of differential equation using Laplace transform (up to second order			
		equation).			
Unit - 4	Fou	rier Series			
	4.1	Definition of Fourier series (Euler's formula).			
	4.2	Series expansion of continuous functions in the intervals		08	07
		$(0, 2l), (-l, l), (0, 2\pi), (-\pi, \pi)$			
	4.3	Series expansions of even and odd functions.			
	4.4	Half range series.			
Unit - 5	Num	nerical Methods			
	5.1	Solution of algebraic equations			
		Bisection method.		05	07
		Regula-falsi method.			
		Newton – Raphson method.		05	07
	5.2	Solution of simultaneous equations containing 2 and 3 unknowns			0.
		Gauss elimination method.			
		Iterative methods- Gauss seidel and Jacobi's methods.			
		T	otal	48	70

Text /Reference Books:		
Name of Authors	Titles of the Book	Name of the Publisher
Mathematicsforpolytechnic	S. P. Deshpande	Pune Vidyarthi Griha Prakashan, Pune
Calculus: single variable	Robert T. Smith	Tata McGraw Hill
Laplace Transform	Lipschitz	Schamus outline series.
Fourier series and boundary value problems	Brown	Tata McGraw Hill
Higher Engineering Mathematics	B. S. Grewal	Khanna Publication, New Delhi
Introductory Methods of Numerical analysis	S. S. Sastry	Prentice Hall of India, New Delhi
Numerical methods for scientific & engineering computations	M. K. Jain & others	Wiley Eastern Publication.

COMPUTER PROGRAMMING THROUGH 'C'

	Theorem	No of Period in one	Credits					
Subject Code	No. of Periods Per Week			Full Marks	:	100		
	L	Т	P/S	ESE :		70	03	
2000302	03	_	—	TA	:	10	03	
				СТ	:	20		

Course Learning Objective:

Computers play a vital role in present day life, more so, in the professional life of technician engineers. In order to enable the students, use the computers effectively in problem solving, this course offers the modern programming language C along with exposition to various engineering applications of computers.

Objective:

The objectives of this course are to make the students able to:

- Develop efficient algorithms for solving a problem.
- Use the various constructs of a programming language viz. conditional, iteration and recursion.
- Implement the algorithms in "C" language.
- Use simple data structures like array, stacks and linked list solving problems.
- Handling File in "C".

	Contents: Theory	Hrs.	Marks
	Introduction to computer software:	[03]	
	 Classification of computer software. 		
	• System software.		
	Application software.		
<u>Unit -1</u>	Programming languages.		
	Machine languages.		
	• Assembly languages.		
	• High level programming languages.		
	Algorithms and flowchart.		
	Fundamental of C languages.	[08]	
	> Introduction.		
	• Background.		
	Characteristics of C.		
	• Uses of C.		
	Structure of a C program.		
TI:4 0	Writing the first C program.		
<u>Unit -2</u>	Files used in a C program.		
	• Source code files.		
	• Header files.		
	• Object files.		
	• Binary executable files.		
	Compiling and Executing C programs.		
	Using comments.		

	\triangleright	Characters used in C.	
	\triangleright	Identifier.	
	\succ	Keyword or Reserved words.	
	\succ	Tokens.	
	\succ	Constants.	
	•	Numeric constant.	
	•	String Character constant.	
	\succ	Variables.	
	\succ	Variable Declaration.	
	\triangleright	Basic Data Types.	
	\triangleright	Additional Data types.	
	\triangleright	Operators and Expressions.	
	\triangleright	Operator Precedence and Associativity.	
	\succ	Type conversion and Type casting.	
	\blacktriangleright	Input/ Output statements in C.	
	Decis	ion Control and Looping Statements:	
		Introduction to Decision control statements.	
		Conditional Branching statements.	
	•	If statement.	
	•	If-else statement.	
	•	If-else-if statement.	
	•	Switch case.	
	\succ	Iterative statements.	
<u>Unit -3</u>	•	While loop.	
	•	Do-while loop.	
	•	For loop.	
	\succ	Nested loops.	
	\succ	Break and continue statements.	
	•	Break statement.	
	•	Continue statement.	
	\succ	Go to statement.	

	Func	tions in 'C'.	[07]	
	\triangleright	Uses of functions.		
	\triangleright	User defined functions.		
	\triangleright	Function Declaration.		
		Calling a function.		
		Actual and formal Arguments.		
		Function proportype		
		Recursion.		
<u>Unit -4</u>	•	Use of Recursive function.		
	\triangleright	Local or Internal variables.		
	\triangleright	Global or External variables.		
	\triangleright	Void function.		
	\triangleright	Storage classes in C.		
	•	Auto or Automatic Storage class.		
	•	Static Storage class.		
		Extern Storage class.		
	- Arra	VS.	[07]	
	\triangleright	Introduction.		
		Declaration of Arrays.		
	\triangleright	Accessing the Elements of an Array.		
	•	Calculating the address of Array elements.		
	•	Calculating the length of an Array.		
	\triangleright	Storing values in Arrays.		
	•	Initializing Arrays during Declaration.		
	•	Inputting values from the keyboard.		
	•	Assigning values to Individual Elements.		
	\succ	Operations on Arrays.		
<u>Unit -5</u>	•	Traversing an Array.		
	•	Inserting an Element in an Array.		
	•	Deleting an Element from an Array.		
	•	Merging Two Arrays.		
	•	Searching for a value in an Array.		
	\triangleright	Passing Arrays to functions.		
		Two dimensional Arrays.		
	•	Declaring Two-dimensional Arrays.		
	•	Initializing Two-dimensional Arrays.		
	•	Accessing the Elements of two dimensional Arrays.		
	\succ	Operations on Two-dimensional Arrays.		

	Pointers.	[07]	
	Understanding the Computer's Memory.		
	> Introduction to pointers.		
	 Declaring pointer variables. 		
	 Pointer Expressions and pointer Arithmetic. 		
	 Null pointers. 		
	 Passing Arguments to function using pointer. 		
<u>Unit -6</u>	Pointers and Arrays.		
	Passing an Array to a Function.		
	 Dynamic Memory Allocation. 		
	• Malloc () function.		
	• Calloc () function.		
	• Realloc () function.		
	• Free () function.		
		[0.4]	
	Structures and Unions.	[04]	
	Structures.		
	Structure variables and Arrays.		
	• Initialization of structure variable and Array.		
	• Dot (•) Operator.		
	• Assigning value of a structure to Another structure.		
T	 Structure within structures. 		
<u>Unit - /</u>	Site of () of a structure.		
	Unions.		
	Site of () unions.		
	 Difference between a structure and an union. 		
	Enum Data Type.		
	 Typedef Declaration. 		
			l

<u>Text / Reference Books -</u>

1.	Programming with C. Second Edition. Tata McGraw-Hill, 2000	-	Byron Gottfried
2.	How to solve by Computer, Seventh Edition, 2001, Prentice hall of India.	-	R.G. Dromey
3.	Programming with ANSI-C, First Edition, 1996, Tata McGraw hill.	-	E. Balaguruswami
4.	Programming with ANSI & Turbo C. First Edition, Pearson Education.	-	A. Kamthane
5.	Programming with C. First Edition, 1997, Tara McGraw hill.	-	Venugopla and Prasad
6.	The C Programming Language, Second Edition, 2001, Prentice Hall of India.	-	B. W. Kernighan & D.M. Ritchie
7.	Programming in C, Vikash Publishing House Pvt. Ltd., Jungpura, New Delhi.	-	R. Subburaj
8.	Programming with C Language, Tara McGraw Hill, New Delhi.	-	C. Balagurswami
9.	Programming in C, Galgotia Publications Pvt. Ltd. Dariyaganj, New Delhi.	-	Kris A. Jamsa
10.	The Art of C Programming, Narosa Publishing House, New Delhi.	-	Jones, Robin & Stewart
11.	Problem Solving and Programming. Prentice Hall International.	-	A.C. Kenneth
12.	C made easy, McGraw Hill Book Company, 1987.	-	H. Schildt
13.	Software Engineering, McGraw Hill, 1992.	-	R.S. Pressman
14.	Pointers in C, BPB publication, New Delhi.	-	Yashwant Kanetkar

CERAMIC AND RAW MATERIALS

		Theory		No of Period in one	Credits		
Subject Code	No.	of Periods Per V	Veek	Full Marks	100		
2012202	L	Т	P/S	ESE	:	70	03
2013303	03	—		TA	:	10	03
				CT	:	20	

Rationale:

Ceramic is inorganic based Technology with a num numbs of Industrial and Domestic Products such as Refractory, Cement, Crockeries & Glass etc. The course offers the Knowledge of Ceramic Spectrums in totality.

Learning Outcome: At the end of this course, the students will be able to:

Explain status of ceramic industries in India.

Enlist different ceramic products and their raw materials.

Explain classification of ceramic materials.

Identify physical properties of different ceramic materials.

List the different raw materials required for manufacturing of refractory, pottery, glass, enamel, cement.

	Contents (Theory)	Hrs	Marks
Unit -1	INTRODUCTION OF CERAMIC	[05]	
	Introduction with its History and uses.		
Unit -2	CERAMIC PRODUCTS: Refractory, Pottery, Glass, Enamel, Cement, etc.	[10]	
Unit -3	RAW MATERIALS:	[10]	
	Silicate Chemistry, Formation, Geology, mineralogy.		
Unit -4	TYPE OF RAW MATERIALS	[15]	
	Plastic raw materials - clays, non- clay plastic raw materials - Talk etc.Non-Plastic raw		
	materials - Refractories, fluxes, Coloring agents.		
Unit -5	OTHER RAW MATERIALS:	[20]	
	Building materials, Chemical and Technical Ceramic material, Specialized Laboratory and		
	Engineering wares materials, Electrical Industry Ceramic material, Construction and		
	Refectory raw materials, Insulator raw materials, Special Products raw materials etc.		
	Total	60	

Text/Reference Books:

Sl. No.	Title		Author
1	Industrial Ceramics	-	F. Singerand S.S. Singer
2	Hand book of glass technology	-	Dr. R. Chavan
3	Porcelain Enamels	-	A.I. Andrews
4	Modern Pottory Manufacture	-	H.N. Bose
5	Refractories	-	M.L. Mishra
6	Elements of Ceramics	-	F.H. Norton
7	Refractories	-	F.H. Norton

GLASS TECHNOLOGY - I

	Theory			No of Period in one	Credits		
Subject Code	No.	of Periods Per V	Veek	Full Marks	:	100	
Subject Code	L	T P/S ESE		:	70		
2013304	03	_	—	TA	:	10	03
				СТ	:	20	

RATIONALE:

Glass is an important Ceramic Engineering subject dealing with Glass Products such as sheet glass. Bullet proof glass, tumbler glass, safety glass, optical glass, and ophthalmic glass etc. The subject imparts knowledge on its making by using different kindof furnaces. It also deals with the raw materials used in Glass Industry.

Learning Outcome: At the end of this course, the students will be able to:

Define glass, state properties and use of glass.

Enlist different types of glass.

List out different raw materials used in glass industries.

Explain properties of different raw materials.

Perform handling and mixing of raw materials for batch.

Prepare batch for glass.

Describe construction ad function of different glass making furnaces.

	Contents (Theory)	Hrs	Marks
Unit -1	INTRODUCTION:	[10]	
	Definition, History and uses of Glass.		
Unit -2	CLASSIFICATION OF GLASS:	[10]	
	Soda Lime Silica Glass, Potash Lime Silica Glass, Potash Lead Glass, Borosilicate Glass,		
	Phosphate Silicate Glass, White and Coloured Glass, Safety Glass and Sandwich Glass etc.		
	Network Glass such as: Fluoride Glass, Alumino-silicate Glass, Phosphate Glass and Borate		
	Glass etc.		
	Colloidal Glass and Glass Ceramic.		
Unit -3	RAW MATERIALS AND COLOURANTS:	[15]	
	Glass Raw Materials such as: Silica, Soda Ash, Boric Oxide, PhosphoricOxide, Sodium		
	Oxide, Potassium Oxide, Lithium Oxide, Calcium Oxide, Barium Oxide, Lead Oxide,		
	Aluminium Oxide, Titanium Oxide, Zinc Oxide and Magnesium Oxide etc - Origin and their		
	properties.		
	Colourants used for Glass such as: Chromium,. Vanadium,. Nickel, Cobalt, Copper,		
	Magnese, Iron, Sulphur, Carbon, Silver, Gold and Selenium etc.		
	Decolorizers used for glass.		
Unit -4	PRINCIPLES OF GLASS MAKING:	[15]	
	Batch and Batch Calculation, Glass Problems and Solutions.		
	Storage and Mixing of Raw Materials, Cullet, Flux, Oxidizing and Reducing Agent, Fining		
	and Annealing of Glass		
	and runnearing of Glass.		

Unit -5	GLASS FURNACES:	[10]	
	Tank Furnace, Pot Furnace, Float Glass Furnace and Annealing Lehr.		
	Total	60	

Text/Reference Books:

Sl. No.	Title		Author
1	Hand Book of Glass Technology	-	Dr. R. Charan
2	Modern Glass Practice	-	S.R. Scholes
3	Hand Book of Glass Manufacture Vol – I and II	-	F.V. Tooley
4	Glass Melting Tank Furnace	-	R. Gunther
5	Coloured Glasses	-	W.A. Weyl

ENAMEL TECHNOLOGY

	Theory			No of Period in one	Credits		
Subject Code	No.	of Periods Per V	Veek	Full Marks	:	100	
Subject Code	L	Т	P/S	ESE	:	70	
2013305	03		—	TA	:	10	03
				СТ	:	20	

RATIONALE:

Enamel is Ceramic Engineering based product which is made by fusing powdered glass to a substrate by firing.

It is used s external coating as well besides its use as high temperature resistant materials in equipment. It is

also used as tray or utensils because of its clean and hygienic quality.

Learning Outcome: At the end of this course, the students will be able to:

Define enamel and use of enamel.

List out different raw materials used in enamel making.

Explain properties of different raw materials for enamel.

Prepare enamel batch, enamel slip and substrate.

Perform application of enamel slip.

Describe construction and function of different enameling furnace.

Identify the defects and remedies in enamel.

	Contents (Theory)	Hrs	Mark
Unit -1	Introduction	[10]	
	Definition, History and uses of Enamel.		
Unit -2	RAW MATERIALS AND COMPOSITION OF ENAMEL : Raw Materials: Availability physical and chemical properties. Composition of: Enamel and Frit.	[10]	
Unit -3	PREPARATION OF ENAMEL AND RELATED MATERIALS : Preparation of: Frit Mill Additions, Electrolytes, Enamel Slip, Metal (Steel and Cast Iron) Surface for Enameling. Milling and Mill Equipment.	[15]	
Unit -4	APPLICATION: Application of Enamel Slip using various Processes.	[10]	
Unit -5	FURNACE AND FIRING : Smelter for Frit Making, Enameling Furnace, Firing Technique and Detail.	[10]	
Unit -6	DEFECTS AND REMEDIES : Defect, Cause and Remedy of: Pinhole, Peeling, Crack. Chipping, Fish Scaling, Blistering, Hair Lining, Jumping Off, Reboiling, Rusting, Tearing, Warping etc.	[05]	
	Total	60	

Books Recommended:

Sl. No.	Title		Author
1	Porcelain Enamels	-	A.I. Andrew
2	Technology of Enamel	-	V.V. Vargin
3	Element of Ceramics	-	F. H. Norton

COMPUTER PROGRAMMING THROUGH 'C' LAB

	Practical			No. of Period in one s	Credits		
Subject Code	No. of Periods Per Week			Full Marks	:	50	
2000206	L	Т	P/S	Internal (PA)	:	15	02
2000300		—	06	External (ESE)		35	05

Course Learning Objectives:

This Lab course is intended to practice what is taught in theory class of 'Computer Programming' and become proficient in computer programming. Computer programming is all about regular practice. Students should work on solved and unsolved problems listed in the text books, and the problems given by the teacher. Some of the topics that should necessary be covered in lab are listed below.

Course outcomes:

Student should be able to write code snippets, and then compile, debug and execute them.

	Content: Practical				
Unit – 1	Familiarization with programming environment (Editor,				
	Compiler, etc.)				
Unit – 2	Programs using, I/O statements and various operators				
Unit – 3	Programs using expression evaluation and precedence				
Unit – 4	Programs using decision making statements and branching				
	statements				
Unit – 5	Programs using loop statements				
Unit – 6	Programs to demonstrate applications of n dimensional arrays				
Unit – 7	Programs to demonstrate use of string manipulation functions				
Unit – 8	Programs to demonstrate parameter passing mechanism				
Unit – 9	Programs to demonstrate recursion				
Unit – 10	Programs to demonstrate use of pointers				
Unit – 11	Programs to demonstrate command line arguments				
Unit – 12	Programs to demonstrate dynamic memory allocation				
Unit – 13	Programs to demonstrate file operations				

The language of choice will be C. This is a skill course. More you practice, better it will be. **Reference Books:**

- 1. Let Us C, Yashavant Kanetkar
- 2. Problem Solving and Programming in C, R.S. Salaria, Khanna Publishing House
- 3. C Programming Absolute Beginner's Guide, Dean Miller and Greg Perry
- 4. The C Programming Language, Kernighan and Ritchie, Prentice Hall of India
- 5. Programming in ANSI C, E. Balagurusamy, Tata McGraw-Hill
- 6. C Programming & Data Structures, B. A. Fouruzan and R. F. Gilberg, CENGAGE Learning.

CERAMIC PROCESSES WORKSHOP-I

	Practical			No of Period in one	Credits		
Subject Code	No. of Periods Per Week			Full Marks	:	50	
Subject Code	L	Т	P/S				
2013307	_	—	02	Internal (PA)	:	15	01
				External (ESE)	:	35	

Rationale:

The rationale behind this workshop is to familiarize the student with various conventional and modern processtechniques used in making various ceramic product.

Learning Outcome: At the end of this course, the students will be able to:

- Apply Processing techniques used in pottery making.
- Explain Process adopted in making refractories.
- Explain Glass forming methods by using process techniques and machine.
- Perform Cement and Concrete application.
- Perform Decoration techniques with finishing.
- Prepare Moulid

	Contents (Theory)			
Unit -1	Introduction of shaping, mounding, casting, pressing and all other processes.			
Unit -2	Cement and concrete application.			
Unit -3	Decoration and finishing of pottery and other ceramic wares techniques			
Unit -4	Moulid making			
	Total			

Books Recommended:

1	The craft of Ceramic	-	Ceza de vegh and Alber Mande
2	Industrial Ceramic	-	Singer and Singer

CERAMIC ENGINEERING WORKSHOP PRACTICE – I (GLASS AND ENAMEL)

	Practical				Credits		
Subject Code	No. of Periods Per Week			Full Marks	:	50	
Subject Code	L	Т	P/S				
2013308	—	—	02	Internal (PA)	:	15	01
				External (ESE)	:	35	

RATIONALE:

This Workshop is kept mainly to get students work with hand on various process involved in making glass and Enamelproducts.

It provides practical knowledge on operations required to be carried out in industry on laboratory scale.

Learning Outcome: At the end of this course, the students will be able to:

- Prepare the raw materials for different glass.
- Perform batching and mixing of glass batch.
- Explain Glass melting techniques and decoration.
- Prepare metal surface for enameling.
- Prepare frit batch and make enamel slip.
- Apply enamel on metal plate.

	Contents (Practical)					
	GLASS					
Unit -1	PREPARATION OF RAW MATERIALS:					
	For: soda Lime Silica Glass, Potash Glass and Colored Glass etc.					
Unit -2	FORMATION AND MIXING OF BATCH:					
	For all kind of Glasses with Frit and Colours and Mixing of the Prepared Batch.					
Unit -3	MELTING OF GLASS:					
	In Pot Furnace of different Batch.					
Unit -4	DECORATION OF GLASS:					
	Decoration of Glass using methods of Etching etc.					
	ENAMEL:					
Unit -1	METAL SURFACE PREPARATION:					
	Such as: Cleaning, Pickling and Neutralization etc.					
Unit -2	FRIT PREPARATION AND MELTING: Making of Epit Datab Mining					
	Making of Ffit Balch.Mixing.					
	Charging in Sheree. Melting and Quenching					
	Weiting and Queitening.					
Unit -3	ENAMEL SLIP MAKING WITH FRIT AND APPLICATION:					
	Enamel slip Making using Frit and Enamel Composition. Application					
	by: Dipping, Brushing etc.					
Unit -4	DRYING AND FIRING OF ENAMEL WARE:					
	Drying using Dryer.					
	Total					

Text/ Reference Books:

1	Hand Book of Glass Technology	-	Dr. R. Charan
2	Porcelain Enamel	-	A. I. Andrew

CERAMIC ENGINEERING LAB – I

	Practical				Credits		
Subject Code	No. of Periods Per Week		Full Marks	:	25		
2013309	L	Т	P/S	Internal (PA)	:	07	01
	—	—	02	External (ESE)	:	18	

RATIONALE:

Ceramic Engineering Laboratory has been kept for studying properties of Clay and carrying out various lab tests on pottery, Refractory, Glass, Enamel materials and Products.

Learning Outcome: At the end of this course, the students will be able to:

- Explain physical properties of clay.
- Perform testing of different properties of pottery, refractory, glass and enamel.
- Explain defects of enamel.

	Contents (Practical)						
Unit -1	STUDY CLAY:						
	Study The Physical Proportion of Clay.						
Unit -2	DETERMINATION OF PROPERTIES:- POTTERY MATERIALS:						
	Water Content in Clay, Shrinkage of Clay and Plasticity of Clay etc.						
Unit -3	DETERMINATION OF PROPERTIES: REFRACTORY MATERIALS:						
	Apparent Porosity, Specific Gravity and Bulk Density of refractory Bricks etc.						
Unit -4	DETERMINATION OF PROPERTIES: - GLASS MATERIALS:						
	Sieve analysis of Glass Sand, Density of Glass and Thermal Endurance of Glass etc.						
Unit -5	DETERMINATION OF PROPERITIES: ENAMEL MATERIALS:						
	Study the Defects in Enamel and Thermal Expansion etc.						

Text/ Reference Books:

1	Porcelain Enamel	-	A.I. Andrew
2	Hand book of Glass Technology	-	Dr. R. Charan
3	Modern Pottery manufacture	-	H. N. Bose
4	Refractories	-	M. L. Mishra

<u>PYTHON / Others (TW)</u>

	Term Work			No of Period in or	Credits		
Subject Code	No. e	of Periods Per V	/eek	Full Marks : 25			
2000310	L	Т	P/S	Internal (PA)	:	07	01
		—	02	External (ESE)	:	18	-

	CONTENTS	Hrs.	Marks
UNIT – 01	Write a program to demonstrate basic data type in python.		
UNIT – 02	Write a program to computedistance between two pointstaking input from the user (Pythagorean Theorem)		
UNIT – 03	Write a python program Using for loop, write a program that prints out the decimal equivalent of $1+\frac{1}{2}+\frac{1}{3}1/n$		
UNIT – 04	Write a Python program to find first n prime numbers. Write a program to demonstrate list and tuple in python.		
UNIT – 05	Write a program using a for loop that loops over a sequence.Write a program using a while loop that asks the user for a number and prints a countdown from that number to zero.		
UNIT – 06	Write a Python Program to add matrices. Write a Python program to multiply matrices.		
UNIT – 07	Write a Python program tocheck if a string is palindrome or not.		
UNIT – 08	Write a Python program toExtract Unique values dictionary values		
UNIT – 09	Write a Python program to read file word by word Write a Python program to Get number of characters, words.		
UNIT – 10	Write a Python program for Linear Search		

<u>CERAMIC ENGG. WORKSHOP PRACTICE – 1</u> (GLASS AND ENAMEL) (TW)

~ ~ .	Term Work			No of Period in one	Credits		
Subject Code	No. of Periods Per Week			Full Marks	:	50	
2013311	L	Т	P/S	Internal (PA)	:	15	02
2013311	—	_	03	External (ESE)	:	35	

RATIONALE:

This Workshop is kept mainly to get students work with hand on various process involved in making glass and Enamelproducts. It provides practical knowledge on operations required to be carried out in industry on laboratory scale.

Learning Outcome: At the end of this course, the students will be able to:

- Prepare the raw materials for different glass.
- Perform batching and mixing of glass batch.
- Explain Glass melting techniques and decoration.
- Prepare metal surface for enameling.
- Prepare frit batch and make enamel slip.
- Apply enamel on metal plate.

Contents (Term Work)		
	GLASS	
Unit -1	PREPARATION OF RAW MATERIALS:	[03]
	For: soda Lime Silica Glass, Potash Glass and Colored Glass etc.	
Unit -2	FORMATION AND MIXING OF BATCH:	[04]
	For all kind of Glasses with Frit and colors and Mixing of the Prepared Batch.	
Unit -3	MELTING OF GLASS:	[05]
	In Pot Furnace of different Batch.	
Unit -4	DECORATION OF GLASS:	[03]
	Decoration of Glass using methods of Etching etc.	
	ENAMEL:	
Unit -1	METAL SURFACE PREPARATION: Such as: Cleaning, Pickling and Neutralization etc.	[05]
Unit -2	FRIT PREPARATION AND MELTING:	[04]
	Making of Frit Batch.	
	Mixing.	
	Charging in Smelter.	
	Melting and Quenching.	
Unit -3	ENAMEL SLIP MAKING WITH FRIT AND APPLICATION:	[02]
	Enamel slip Making using Frit and Enamel Composition.	
	Application by: Dipping, Brushing etc.	
Unit -4	DRYING AND FIRING OF ENAMEL WARE:	[04]
	Drying using Dryer.	
	Firing using Muffle Furnace.	
	Total	30

Text/ Reference Books:

1	Hand Book of Glass Technology	-	Dr. R. Charan
2	Porcelain Enamel	-	A. I. Andrew